
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1989

Design and analysis of a medium access and
control strategy for extending the ISDN services to
LAN users
Muhammad Shafiq
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Shafiq, Muhammad, "Design and analysis of a medium access and control strategy for extending the ISDN services to LAN users "
(1989). Retrospective Theses and Dissertations. 9239.
https://lib.dr.iastate.edu/rtd/9239

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F9239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9239?utm_source=lib.dr.iastate.edu%2Frtd%2F9239&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm 
master. UMI films the text directly from the original or 
copy submitted. Thus, some thesis and dissertation copies 
are in typewriter face, while others may be from any type 
of computer printer. 

The quality of this reproduction is dependent upon the 
quality of the copy submitted. Broken or indistinct print, 
colored or poor quality illustrations and photographs, 
print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a 
complete manuscript and there are missing pages, these 
will be noted. Also, if unauthorized copyright material 
had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the 
upper left-hand corner and continuing from left to right in 
equal sections with small overlaps. Each original is also 
photographed in one exposure and is included in reduced 
form at the back of the book. These are also available as 
one exposure on a standard 35mm slide or as a 17" x 23" 
black and white photographic print for an additional 
charge. 

Photographs included in the original manuscript have 
been reproduced xerographically in this copy. Higher 
quality 6" x 9" black and white photographic prints are 
available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly 
to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 8920184 

Design and analysis of a medium access and control strategy for 
extending the ISDN services to LAN users 

Shafiq, Muhammad, Ph.D. 

Iowa State University, 1989 

U M I  
300N.ZeebRd. 
Ann Arbor, MI 48106 



www.manaraa.com



www.manaraa.com

Design and analysis of a medium access and control 

strategy for extending the ISDN services to LAN users 

by 

Muhammad Shafiq 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Electrical Engineering and Computer Engineering 
Major: Computer Engineering 

Approved: 

In Chjwge^of Major Work 

Department 

For the Graduate College 

Members of the Committee: 

Iowa State University 
Ames, Iowa 

1989 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy



www.manaraa.com

11 

TABLE OF CONTENTS 

1 INTRODUCTION 1 

1.1 ISDN 2 

1.1.1 ISDN user-network interface 2 

1.1.2 LAPD 7 

1.2 Requirements Specifications 7 

1.2.1 Information transfer modes 8 

1.2.2 Information transfer capability 8 

1.2.3 Communication establishment modes 8 

1.2.4 Symmetry 9 

1.2.5 Communication configurations 9 

1.2.6 Effective transfer rates 9 

1.2.7 Prioritized traffic 10 

1.2.8 Interfacing 10 

1.2.9 Access control 10 

1.3 Format of the Dissertation 10 

2 ISDN AND MEDIUM ACCESS STRATEGIES 12 

2.1 Random Access Strategies 12 



www.manaraa.com

Ill 

2.1.1 Problems 13 

2.2 Controlled Access Strategies 13 

2.2.1 Token ring 14 

2.2.2 Cambridge fast ring 15 

2.2.3 FDDI-II 16 

2.2.4 Token passing bus 17 

2.3 Recent Trends 18 

3 DESCRIPTION 20 

3.1 Frame Format 20 

3.1.1 Status channel 22 

3.1.2 Token channel 22 

3.1.3 ISDN channels 22 

3.2 Access Protocols 22 

3.2.1 Token channel access protocol 23 

3.2.2 ISDN channel access protocol 27 

3.3 Interface Operation 28 

3.3.1 Status channel interface 28 

3.3.2 B channels interface 29 

3.3.3 Token channel interface 31 

4 SPECIFICATIONS 32 

4.1 SDL 32 

4.1.1 SDL constructs 33 

4.2 Overview of the Specifications 36 



www.manaraa.com

iv 

4.2.1 Station Block 36 

4.2.2 ISDN/LAN interface specifications 38 

4.3 Complexity Analysis 38 

SIMULATION AND ANALYTICAL MODELING 41 

5.1 Network Parameters 41 

5.1.1 LAN Characteristics 41 

5.1.2 ISDN interface , 42 

5.2 D Channel Model 42 

5.2.1 Control message transfer model 42 

5.2.2 Call establishment and de-establishment 48 

5.3 Token Channel 60 

5.3.1 Traffic categories 60 

5.3.2 Traffic characteristics 60 

5.3.3 Token channel performance without the TTRT: homogenized 

traffic case 61 

5.3.4 Token channel performance with the static TTRT: homoge­

nized traffic case 62 

5.3.5 Token channel performance with the static TTRT: non-homogenized 

traffic case 67 

5.3.6 Token channel performance with the dynamic TTRT: non-

homogenized traffic case 68 

CONCLUSION 80 

6.1 Future Work 81 



www.manaraa.com

7 ACKNOWLEDGEMENT 

8 BIBLIOGRAPHY 

9 APPENDIX . . . 



www.manaraa.com

vi 

LIST OF TABLES 

Table 1.1: Emerging ISDN Services 3 

Table 1.2: Values for Bearer Services Attributes 4 

Table 1.3: Values for Teleservices Attributes 5 

Table 4.1: Complexity of Interface 40 

Table 5.1: Circuit Mode Connection Messages 56 



www.manaraa.com

vil 

LIST OF FIGURES 

Figure 1.1: Frame Format of 1544 Kbps Primary Interface 6 

Figure 3.1: Frame Format 21 

Figure 3.2: Token Channel Format 24 

Figure 3.3: Token Channel Start Delimiter, End Delimiter, and Access 

Control Field Formats 26 

Figure 4.1: SDL Constructs 35 

Figure 4.2: Process Interaction Diagram of a Station Block 37 

Figure 4.3: Process Interaction Diagram of ISDN/LAN Interface .... 39 

Figure 5.1: D channel as a Cyclic Server (non-prioritized case) 43 

Figure 5.2: Expected Waiting Time of the D Channel Control Messages 

as a Function of Normalize Load 49 

Figure 5.3: Expected Queue Length of the D Channel Control Messages 

as a Function of Normalize Load 50 

Figure 5.4: Buffer Occupancy of the D Channel Control Messages as a 

Function of Normalize Load 51 

Figure 5.5: Expected Peak Waiting Time of the D Channel Control Mes­

sages as a Function of Normalize Load 52 



www.manaraa.com

Vlll 

Figure 5.6: D Channel as a Cyclic Server (prioritized case) 53 

Figure 5.7: Call Establishment and De-establishment Procedure .... 54 

Figure 5.8: Expected Waiting Times of SETUP, RL, DIS, and ALRT 

Messages as a Function of Call Inter-arrival Time 58 

Figure 5.9: Expected Waiting Times of RLACK and CONACK as a 

Function of Call Inter-arrival Time 59 

Figure 5.10: Expected Normalized Waiting Time of Homogenized Data 

Packets as a Function of Normalized Load 63 

Figure 5.11: Expected Queue Length of Homogenized Data Packets as a 

Function of Normalized Load 64 

Figure 5.12: Maximum Waiting Time of Homogenized Data Packets as a 

Function of Normalized Load 65 

Figure 5.13: Méiximum Buffer Occupancy of Homogenized Data Packets 

as a Function of Normalized Load 66 

Figure 5.14: Expected Normalized Waiting Time of Non-homogenized Data 

Packets as a Function of Normalized Load 69 

Figure 5.15: Expected Queue Length of Non-homogenized Data Packets 

as a Function of Normalized Load 72 

Figure 5.16: Maximum Waiting Time of Non-homogenized Data Packets 

as a Function of Normalized Load 74 

Figure 5.17: Maximum Buffer Occupancy of Non-homogenized Data Pack­

ets as a Function of Normalized Load 76 



www.manaraa.com

ix 

Figure 5.18: Variance of Waiting Time of Homogenized Data Packets as 

a Function of Normalized Load 78 

Figure 5.19: Variance of Waiting Time of Non-homogenized Data Packets 

as a Function of Normalized Load 79 



www.manaraa.com

1 

1 INTRODUCTION 

A significant portion of the contemporary research efforts in the area of data 

communications and computer networking is devoted to Local Area Networks (LANs) 

and Integrated Services Digital Networks (ISDNs). Both, ISDN and LAN, are being 

developed to satisfy the the key requirements of their specific applications.^ This 

application specific development has created a large semantic gap between ISDN 

and LAN. Consequently, an extensive mapping is required to interface an ISDN 

with a LAN. Obviously, such mapping may limit the overall performance of a LAN 

[37]. 

In the next section, a brief overview of the ISDN services and ISDN user-

network interfaces is presented which is followed by the requirements of a medium 

access and control strategy that can be used to extend the ISDN services to a LAN 

user. 

^LANs are used primarily for connecting the users located in a closed proximity 
by using, generally, a high bandwidth shared transmission medium. On the contrary, 
ISDNs are primarily intended for worldwide extension of communication services. 
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1.1 ISDN 

An ISDN is a network, in general evolving from a telephony Integrated Digital 

Network (IDN), that provides end to end digital connectivity for supporting a wide 

range of services as shown in Table 1.1 . Users can access these services, termed as 

ISDN services, through a limited set of standard multi purpose user-network inter­

faces which are specified by the International Telegraph and Telephone Consultative 

Committee (CCITT) in its I series recommendations [7]. 

The ISDN services are described by a set of service attributes and are divided 

into two broad categories: bearer services and teleservices. Table 1.2 and Table 1.3 

list the service attributes of bearer services and teleservices, respectively. A user 

can tailor an ISDN service or can create a service by selecting appropriate values of 

the service attributes. 

1.1.1 ISDN user-network interface 

To assist in developing worldwide compatible ISDN user-network interfaces, 

the CCITT recommendations 1.412 specify two access capabilities [7]: 

1.1.1.1 Preferred basic access capability The preferred basic access 

capability provides the following options to a user:^ 

# 2B + D 

# B + D 

^In these options, a B channel provides a bandwidth of 64 Kbps and a D channel 
supports a bandwidth of 16 Kbps. 
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Table 1.1; Emerging ISDN Services 

I LOW RATE DATA TRANSMISSION 
TELEMETRY 30-100 BPS 

METER READING 
SECURITY ALARMS 
OPINION POLLING 
TELECONTROL EG. ENERGY MANAGEMENT 

II HOME AND BUSINESS SERVICES 1K-1QK 
TELETEX 
HOME COMPUTER 
VIDEOTEX 
HOME FACSIMILE 
LOW SPEED DATA 

III INTEGRATED MULTI-SERVICES 10K-100K BPS 
LOW BIT RATE VOICE 
HIGH SPEED DATA 
PCM TELEPHONY/WDEBAND TELB^HCNY 
FACSIMILE 
SLOW SCAN VIDEO 

IV BULK SERVICES 
I 100K-1M BPS 

HIGH SPEED FACSIMLE 
WIDE BAW MUSIC 

IL BPH 
VIDEO CONFB%NCe 
INTtAACTIViE VIDEO RETRIEVAL 

in 10M-100M BPS 
TELEVISION 

IV. . 100M-1000M BPS 
HIGH DEFINITION TELEVISION 
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Table 1.2: Values for Bearer Services Attributes 

Peiiibl* vilum ol aiiribuin Attnbutn iNoit 61 

Circuit Packti 

Inlormttion irtntftr 
êUtibuw 

1. Information iransfer modi 

Bit r#l# (kbit/l) Throughput 

64 384 1536 1930 

3. Information trantftr ratt 
Othtr viluM for 
funhtr itudv 

Opt«nf for 
further itudy 

Unmiriettd 
digital 
information 

Sptfch 3.1 kHz 7 k H t  15 kH: 
audio audio audio 

Othcrt 
for 
funhtr 
ftudv 

3. Information tranifar 
capability 

8 kHi intagritv 
Scrviet data unit 

Unttructurad 4. Structura 

Oamand Raiartwd Parmantm 
S. Establithmtnt of 

communication INott SI 

Point-to-point Multipoint Broadcait 
INott 1) 

6. Communication 
configuration 

Unidirtctional Bidirtetional 
lymmttric 

Bidirtetional 
atymmttric 

7. Symmttry 

0116) 01641 HO M i l  H13 Othtr* for 
fuMht» ttudy 

Acctu iitr>àuiet 
8. Acctu channti and tait 

1.440 1.451 eon 
at 7 

I.4S2 Othtr* for furthtr nudy 9.1 Signalling acctw 
protocol 

5711 tni It"»)! 1.460 
l«1 X.3S Othtri for furthtr study 92 Information acettt 

protocol 

Undtr study 

Gtntnt satibutit 
10. Suppltmtntary Mrvicts 

providtd 

11. Quality of ttrvict 

13. Initrworking poisibililitt 

13. Optrational and 
commarcial 

•Noie I - The diaractcriiaiion of the informallon (ransfer configuration attribute 'broadcast* is for further study. 

Not* 2 - The Mttt fat a "dau sequence inie|riiy' aiiribute is for further study. 

Noi* 3 - Tlw use of RecommeRdation G.72t as an information accès» protocol is fot further audy. 

Sou 4 - The use of Recommendation 1.4)1 as an information access protocol it for further itudy. 

Sou S - A provisional definition of the establishment of communication is given in Recommendation 1.1)0 
Further clarilicaiion is required. 

Not* 6 — The attributes are intended to be independent of each other. 
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Table 1.3: Values for Teleservices Attributes 

Pouibt* values of attributes Service 
attributes 

Rtfar to Recommendation 1.211 

Information 
transfer 
attributes and 
access 
attributes 

Speech Sound Text Fac­
simile 

Text-
fac­
simile 

Video­
tex Vklao Others 

Type of user 
information 

X224 T.70 Oihofs 
Layer 4 
protocol 

X.225 T.62 Other: Layers 
protocol 

T.73 T.61 T.6 T.100 Others Layer 6 
protocol 

200 240 300 400 Others 
Resolution 
(Note! 

Alpha­
mosaic Geometric Photographic Others 

Graphic mode 
(Note) 

T.60 T.5 T.72 Others 
Layer? 
protocol. 

Under study 
General attributes 

Soit - If applicable. 
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1 twig • i« re fta laoasEBKg) 

HhSESEI—» 

Ljîiilliililliî 

*«221 ^ 

L" 

V|3|4,5,l,7|l 

ncagriL 

t|«,3,4,5i»|7,l 

oKcm or nMSBSBN 

• D 

Figure 1.1: Frame Format of 1544 Kbps Primary Interface 

1.1.1.2 Primary rate B channel access capability The primary rate 

B channel access capability provides one D and multiple B channels—each with a 

capacity of 64 Kbps. The total bandwidth available to a user is equal to nB + D, 

where n is less than or equzil to 23 for 1544 Kbps interface^ and n is less than or 

equal to 30 for 2048 Kbps interface.'^ 

The frame format of the primary interface of 1544 Kbps is shown in Figure 

1.1. All the channels of the primary interface are time multiplexed, and channel 

number 24 is used for signalling and control information transfer using Link Access 

Procedure D (LAPD). 

®If signalling is provided in another physical ISDN user-network interface, then 
n=24. 

''If signalling is provided in another physical ISDN user-network interface, then 
n=31. 
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1.1.2 LAPD 

LAPD is defined in the CCITT recommendation 1.441. The procedure—a 

subset of HDLC [14],[15]—provides the following functions: 

• One or more data link connections on a D channel. 

• Distinction between data link connections. 

• Frame delimiting, recognition, aligning, and transparent reception and trans­

mission. 

• Recovery 

• Flow control 

LAPD ensures that, even in cases where two or more terminals attempt to 

access the D channel simultaneously, one terminal will always be successful. When 

an active Terminal Equipment (TE) has no frame to send, it sends on this channel 

binary ones signal which corresponds to the absence of the line signal. Collisions 

on D channels are sensed by monitoring the D echo channel and resolved using the 

deterministic back-off procedure of LAPD. The procedure supports acknowledged 

(only for point-to-point operation) and unacknowledged transfer mode using single 

or multiple frame operation. 

1.2 Requirements Specifications 

In this section, we will discuss the key requirements for a Medium Access 

and Control Strategy (MACS) which can be used to extend the telecommunication 
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services, supported by an ISDN, to a LAN user. 

1.2.1 Information transfer modes 

The MACS must support circuit switched and packet switched transfer modes 

and it should satisfy fairly the bandwidth demands of LAN users. 

1.2.2 Information transfer capability 

The bandwidth allotted to a user must be large enough to transmit the following 

unrestricted digital information; 

• Speech 

• 3.1 KHz Audio 

• 7 KHz Audio 

• 15 KHz Audio 

• Video 

1.2.3 Communication establishment modes 

The MACS strategy should support the following communication establishment 

modes: 

• Demand 

• Reserved 

• Permanent 
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1.2.4 Symmetry 

The information transfer mode between two or more than two access points 

can be: 

• Unidirectional 

• Bidirectional symmetric 

• Bidirectional asymmetric 

The MACS should not only support end to end unidirectional and bidirectional 

information transfer, it should also exploit the unidirectional information transfer 

mode to improve the performance of the LAN.^ 

1.2.5 Communication configurations 

The MACS should support the following communication configurations: 

• Point-to-point 

• Multipoint 

• Broadcast 

1.2.6 Effective transfer rates 

The MAC should support 64, 384 and 1536 KBPS information transfer rates. 

This is necessary to establish a symmetriccil communication mode with a remote 

^Example: In case of the token ring, the receiver may remove the data trans­
mitted by the sender, and at the same time, the receiver can also transmit its own 
data which can be removed by the sender. 
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end user. 

1.2.7 Prioritized traffic 

The MACS must support the prioritized traffic without degrading the overall 

performance of the network , and it should guarantee network-wide fairness among 

all the stations contending for the right of transmission at the same priority level. 

1.2.8 Interfacing 

The MACS should provide required functionality to support an efficient inter­

face. The performance of the network must not be limited by the performance of 

the interface. Any modification at the upper layers of a LAN must not require a 

modification in the interface. 

1.2.9 Access control 

The MACS should not depend upon a central controller for controlling access to 

the shared transmission medium.® The access control should be simple, distributed, 

and robust. 

1.3 Format of the Dissertation 

The format of the rest of the dissertation is as follows: MACSs of the con­

temporary LANs are discussed in Chapter 2. Chapter 3 describes and Chapter 4 

specifies a MACS that can be used on a ring topology to extend the ISDN services 

®This requirement ensures higher reliability. 
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to a LAN user. The performance of the proposed strategy is evaluated—using sim­

ulation and analytical modeling— and discussed in Chapter 5. Finally, conclusions 

are stated in Chapter 6. 
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2 ISDN AND MEDIUM ACCESS STRATEGIES 

The MACSs of contemporary LANs can be divided into two broad categories: 

random access strategies and controlled access strategies. Both categories have their 

intrinsic advantages and disadvantages^ which are discussed in this section—with 

respect to for supporting the ISDN services. 

2.1 Random Access Strategies 

In random access strategies [1], [11], [19], [29], a station is allowed to transmit 

on a shared transmission medium when the medium is sensed idle by the station.^ 

The success or the failure of a transmission depends upon the state of the other 

stations—connected on the same transmission medium. In case of a failure, which is 

detected either by sensing a collision [11] or by the absence of an acknowledgement 

random access strategy is very suitable for low intensity, non-realtime data 
traffic, but a controlled access strategy is more convenient for high intensity data 
traffic. 

^An exception to this rule is ALOHA network [1], in which a station is allowed 
to transmit even though the medium is still busy. 
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[1],^ the contending stations retransmit after a short delay, 

2.1.1 Problems 

Random access strategies are simple to implement® but provide limited support 

for realtime applications because of the following two major problems: 

• High variance of network-access-delay 

• Possibility of starvation under high intensity data traffic 

Moreover, it is not easy to allocate a portion of the shared bandwidth of a 

transmission medium to a station without altering the fundamental structure of the 

random access strategies. Though an implicit priority order can be implemented 

easily,® the strategies lack the required capabilities for supporting the circuit switch­

ing facilities. Because of all these drawbacks, these strategies are not further con­

sidered. 

2.2 Controlled Access Strategies 

In the controlled access strategies [2], [9], [12], [13], [43], the access to the 

shared transmission medium is granted by passing a token explicitly [2], [12], [13], 

timer is initiated when a packet is transmitted. If the timer times out and 
the acknowledgement of the transmitted packet is not received, the packet is re­
transmitted. 

*The back-off delay is an important performance controlling parajneter and is 
discussed by Tannenbaum [41 j. 

®The is the prime reason of the wide-spread use of Ethernet—a random access 
strategy based, baseband LAN [11]. 

®One way of obtaining this objective is to assign short back-off delay to high 
priority stations and long back-off delay to low priority stations. 
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or implicitly [10], [43]. The token is passed on either in the physical order of the 

stations [2], [13], or in a user defined logical order [12]. The monopolization of the 

right to transmit is prevented by defining a token hold timer [13] or a token rotation 

timer [3]. The prioritized traffic is supported by dynamically changing the token 

priority and disallowing a station to transmit if the current token priority is more 

than the pending Protocol Data Unit (PDU) [16]. In the following section, a few 

representative controlled access strategies are discussed. 

2.2.1 Token ring 

The IEEE token ring [13] is based upon a medium access strategy in which an 

explicit token is passed from station to station in the order determined by the ring 

topology. A station can start transmission of a pending PDU after receiving a token 

whose priority is not greater than the priority of the pending PDU. Stations are 

not allowed to hold the token for more than a user defined token hold time; thus, 

the fairness is ensured among the stations contending for the right of transmission 

at the current priority level of the ring. The strategy is simple, but it possesses the 

following drawbacks: 

• A large variance of network-access-delay 

• No support for a circuit switching facility. Consequently, realtime services 

with unpredictable characteristics^ cannot be supported. 

^The bandwidth requirements for such services are assumed to be known. 
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2.2.2 Cambridge fast ring 

The Cambridge fast ring [38], a derivative of Cambridge ring, is a 50 Mbps slotted 

LAN. A fixed format train of slots circulates indefinitely in the ring. A station 

willing to transmit waits for an empty slot,® marks it occupied, and transmits in 

the slot. The receiving station, indicated by an address field in the header of the 

slot, sends an acknowledgement by placing a marker in the same slot. To ensure 

fairness among all contending stations, a station is not allowed to transmit in more 

than one slot in one round trip delay. 

A block transfer protocol, tailored to support the ISDN services, is defined for 

Cambridge fast ring [37]. The protocol can handle varying size of blocks without 

introducing complex segmentation and assembly of the packets. The Information 

such as start of block, end of block, tag, and length of block is included in the 

header of the block. 

Unlike the IEEE token ring, the Cambridge fast ring provides necessary support 

for a circuit switching facility.® But, the Cambridge ring still is not an ideal approach 

for supporting the ISDN services because of the following reasons: 

• A large portion of the bandwidth is wasted in the management and control of 

slots. 

• The bandwidth available to a station is restricted to one slot per roundtrip 

delay^® 

®The state of the slot, empty or occupied, is indicated in the header of the slot. 
®A station can occupy a slot which will be accessible to this station after a 

deterministic delay. 
^°A possible solution could be to allow a station to occupy more than one slot in 
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• The proposed ISDN/Cambridge fast ring interface [39] require complex control 

procedures to extend the ISDN services to LAN users, which will degrade the 

overall performance of the LAN. 

2.2.3 FDDI-II 

FDDI-II [2], [3] is 100 Mbps/125 baud rate, double ring, multiple frame trans­

mission in a single access protocol. Both, circuit switching (with 6.144 Mbps 

isochronous channels) and packet switching techniques are supported on a fiber 

optic based transmission medium. Upto 16 circuit switched channels, with a total 

capacity of 98.304 Mbps, can be used. Like the ISDN channels, these channels are 

full duplex and can be subdivided into 2.048 or 1.536 Mbps data highways. The 

Isochronous channels can be dynamically assigned and deassigned^^ on real-time 

basis—with the remaining channels available for packet switching. Circuit switched 

data are injected into the ring by means of a cycle, which is initiated^^ by a cycle 

mastcT using an internal or an external clock.. 

A study of FDDI, a subset of FDDI-II, was conducted by Marjory [26], in which 

the reliability mechanism of FDDI and its suitability for the future space station 

was analyzed. The author concludes that the FDDI design represents an extensive 

effort to incorporate reliability mechanism as an integral part of the design. The 

mechanism provides fault isolation, monitoring, and reconfiguration functions. 

Interfacing of the ISDN to FDDI-II is yet to be studied. However, it can be 

one round trip delay. But this may create a possibility of starvation. Also, it will 
increase the variance of network-access-delay. 

^^This is accomplished by negotiating with the master station. 
^^These cycles are created at a frequency of 8 KHZ. 
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easily visualized that FDDI-II is primarily designed for intra-network traffic; thus, 

inter-network traffic can face serious problems, such as: 

• No support for slow, reedtime data traffic, such as voice. 

• Bandwidth allocation is centrally controlled which will create an unnecessary 

delay in connection establishment. Because of this, an extensive mapping is 

required between an ISDN and FDDI-II to extend the ISDN services to a LAN 

user. 

2.2.4 Token passing bus 

The medium access strategy used in the token passing bus has the same se­

mantic as that of the token ring access strategy. Like the token ring, a token is 

passed from station to station^^ in a logical order. Upon reception of the token, a 

station is allowed to transmit. The station must surrender the token to the logical 

next station before the token hold timer expires. 

The strategy suffers with the same drawbacks as discussed under the token 

ring. Moreover, a lengthy header of the token passing bus is expected to further 

degrade the network performance while transferring short signalling and control 

information. 

^®The mciin difference between the token passing bus and the token ring is the 
structure of the ring. In the token passing bus a logical ring is constructed which 
implies that a logical next station may not be the physical next station. On the 
contrary, in the token ring there is no distinction between a logical next and a 
physical next station. 
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2.3 Recent Trends 

Recently, researchers have proposed hybrid, medium access strategies, in which 

controlled access and random access techniques are combined to increase the overall 

performance of the networks [8], [10], [39]. Stewart and Boulton [39] developed a 

prototype 50 Mbps glass fiber LAN which provides an end-to-end path between 

two stations using a rooted tree topology. Thus, the medium access and control 

strategy of the LAN is simple, but the central hub is a bottleneck and limits the 

performance of the network. Further, the expected delay encountered by a user also 

depends upon the physical location of the user. 

A distributed MACS which achieves a conflict free round robin scheduling us­

ing an implicit token passing technique is used in Expressnet [43]. A variant of 

this strategy is used in Fastnet [23]. Both, Expressnet and Fastnet, approximate 

the behavior of the token ring using a folded bus configuration; thus, contain all 

drawbacks of the token ring. The implicit token passing scheme improves the per­

formance of these networks but also introduces additional complexity to interface 

these networks to an ISDN. 

A distributed MACS for a multi channel LAN with global and local transceiving 

channels using a look-ahead reservation protocol is proposed by Yum and Wong 

[46]. The network is capable of message switching, packet switching, and circuit 

switching. The available bandwidth is divided into local and global channels to 

support telephone calls, conference calls, facsimile and customized data rates. The 

local channels are used for transmission between a preassigned set of stations using 

CSMA/CD based bus access protocol. The global channels are accessed using a 
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reservation scheme and are used primarily for communication between different 

sets. A separate global channel is reserved to implement the reservation scheme. 

The channel is known as a reservation channel and employs the slotted ALOHA 

medium access protocol for arbitration between the contending stations. 

The proposed strategy is intended primarily to reduce the back-off delay of 

CSMA/CD. However, the strategy suffers from all the flaws of a random access 

strategy. Also, the contention on the reservation channel will reduce the overall 

performance of the network, and it will introduce delay in the connection establish­

ment. The prioritized access is not allowed in this strategy. And dynamic expansion 

of the bandwidth is not supported. 
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3 DESCRIPTION 

In this chapter, a MACS is proposed that will not require a complex ISDN/LAN 

interface and will extend the ISDN services to a LAN user without degrading the 

performance of the LAN. The proposed MACS is distributed in nature and can be 

implemented on a ring topology. 

3.1 Frame Format 

A frame whose format is shown in Figure 3.1 is inserted by the master station^ 

after every 125 [xsec.^ The available bandwidth of a frame is divided as follows: 

• Status channel (24 bits per frame) 

• Token channel (2256 bits per frame^) 

• ISDN channels (192 bits per frame) 

^Every station has the ability to act as a master station. 
^This implies that the cycle will be inserted at a frequency of 8KHz which may 

help in optimizing the voice transmission. 
^This value is computed for a 20 Mbps LAN and could be different for different 

bandwidth LANs. 
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ED End Delimiter 

Figure 3.1: Frame Format 
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3.1.1 Status channel 

The first 24 bits of the frame^ are reserved for the status channel. A binary 0 in 

the status channel indicates that the corresponding ISDN channel is free; otherwise, 

the channel is occupied by a station. 

3.1.2 Token channel 

The status channel is followed by the token channel^ which is large enough to 

support a modified token ring protocol. The token channel is used for intra-LAN 

data traffic. All free ISDN channels, except the D channel, are merged with the 

token channel. Thus, a free ISDN channel will not degrade the overall performance 

of the network. 

3.1.3 ISDN channels 

In every frame, there are 24, 8 bit ISDN channels whose status is indicated by 

the status channel. The format of the ISDN channels is consistent to the CCITT 

specifications [7]. 

3.2 Access Protocols 

Two access protocols are defined to regulate the access to the shared transmis­

sion medium. These are : 

• Token channel access protocol 

^SD and Preamble fields are not considered here. 
®This position of the token channel in a frame will facilitate to merge the token 

channel with the free ISDN channels. 
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• ISDN channel access protocol 

3.2.1 Token channel access protocol 

3.2.1.1 Frame format of the token channel The frame format of the 

token channel is shown in Figure 3.2. The format is an extension of the IEEE token 

ring frame [13]. A new sub-field known as timer subfield is specified which will allow 

a user to dynamically control the Target Token Rotation Time (TTRT).® 

3.2.1.2 Access control In this protocol, the access to the token channel 

and all free ISDN channels is regulated by expUcitly passing a token from station 

to station. A station can transmit a pending PDU if the following conditions are 

satisfied: 

• The station has received a token.^ 

• For realtime pending PDU, the time elapsed between the last and current 

token arrivals is less than the current TTRT. 

• For an ordinary pending PDU, the time elapsed between the last and current 

token arrivals plus the transmission time of the pending PDU will be less than 

the current TTRT. 

®This is an enhancement of the timed token rotation protocol [44], which allows 
to change the TTRT statically, not dynamically. 

^This restriction is not rigid. A station can transmit even without holding a 
token, provided it has established a full duplex communication with the current 
token holding station. 
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Figure 3.2: Token Channel Format 
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• The token hold timer of the station will not expire during or before the trans­

mission of the pending PDU.® 

3.2.1.3 TTRT control The LAN will generally operate on a mutually 

agreed TTRT value. Any active station can request to reduce the TTRT by setting 

the TIMR subfield to an appropriate value,® as it repeats the AC field. The current 

token holding station acknowledge this request by modifying the TIM subfield^® 

according to the requested value and setting TIMR to the value which correspond to 

the highest, prespecified TTRT value. The station then becomes a stacking station. 

The operation of the stacking station is the same as the token ring stacking station 

operation—defined in the IEEE token ring standard for controlling the priority of 

the ring.^^ The stacking station is responsible for restoring the previous value of 

the TTRT by using the same procedure as specified for the IEEE token ring to 

restore the ring priority.^^ 

®This can be checked by using the size of the pending PDU to be transmitted 
and the remaining token hold time. 

®Since the TIMR subfield is 2 bit in length, a station can request one of the 4 
possible TTRT values which should be mutually selected at the LAN initialization 
time. 

^°The subfield is modified when token is placed on the ring. 
^^The IEEE token ring priority control procedure is selected for its flawless 

operation. 
^^This implies that the TTRT can be reduced by any active station but can be 

increased only with the mutual consent of all the active stations. 
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R T I H  

RTIM Requested Target Token Rotation Timer 

TIM Current Target Token Rotation Timer 
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SD_TKN Start Delimiter of Token Channel 

AC Access Control 

ED_TKNI End Delimiter of Token 

Figure 3.3: Token Channel Start Delimiter, End Delimiter, and Access Control 
Field Formats 
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3.2.2 ISDN channel access protocol 

Access to the ISDN channels is regulated by the status channel. A station 

willing to transfer on a channel can do so by reserving the channel access bit.^^ 

Once a channel is reserved, no other station can transmit through this channel. It 

is the responsibility of a station to release the ISDN channels occupied by it.^'^ The 

users have complete freedom to define their own protocols for transferring data in 

the ISDN channels. The network transparently transmits the user data through the 

interface. 

3.2.2.1 Data consistency Since all the free ISDN channels are merged 

with the token channel, an ISDN channel which was free for a station transmitting 

in the token channel may be occupied by another downstream station which may 

insert its data in the channel and destroy, partially or completely, the token channel 

data. To overcome this problem, a station is not allowed to transmit in the very 

same cycle in which it reserves the ISDN channel. Instead, it waits for the next 

cycle and then transmits its data.^^ 

^^This can be accomplished by setting the appropriate status bit to 1, if it was 
previously 0. 

Obviously, this will complicate the recovery procedures. 
^^It appears that this may degrade the performance of the network but a closer 

look on ISDN data transfer mechanism reveals otherwise: since the ISDN cannot 
instantly respond to a D channel signalling and control information, the station 
will not start transmission immediately after reserving the ISDN channel. The 
token channel can use this delayed response to improve its throughput. Further 
improvement is possible if the channel is considered free until the occupying station 
actually starts transmission. 
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3.2.2.2 Recovery procedures The token channel access protocol can uti­

lize the recovery and maintenance procedures defined for the IEEE token ring, with 

the exception of the recovery of the ISDN channels occupied by the failed stations. 

Since there is no station that knows the current owners of the occupied ISDN chan­

nels, the station initiating the recovery must inquire the status of the ISDN channels 

reserved by other stations and set those channels free which are not occupied by 

the responding stations. Upon recovery, the station should contend for the channels 

and should assume that all of its previously occupied ISDN channels are released. 

It is assumed that the failure of a station which has occupied some ISDN channels 

will be detected when a token will be passed on to the failed station.^ ̂  

3.3 Interface Operation 

The interface is simple, mostly, limited to the frequency conversion from ISDN 

signalling [T] to the LAN signalling [13], and is comprise of primarily two re­

ceiver/ transmitter pairs: one on the network side and the other on the ISDN side. 

3.3.1 Status channel interface 

Status channel bits are neither modified nor transmitted towards the ISDN. The 

bits received from the network receiver are transmitted by the network transmitter. 

^®To make sure that the procedure works, the failed station should wait for a user 
defined time before becoming part of the ring. 

^^At this time the token will be lost and the lost token recovery procedure— 
similar to the IEEE token ring, lost token recovery procedure—will be initiated by 
the network monitor station. 
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3.3.2 B channels interface 

To avoid any ambiguity, in the rest of this chapter, the ISDN channels of the 

LAN side of the interface will be called LAN-ISDN channels and ISDN channels of 

the ISDN side of the interface will be simply called ISDN channels. We will return 

to our previous definition of ISDN channels in the next chapter. 

The interface transfers data from LAN to ISDN and vice versa by using the 

following algorithms: 

3.3.2.1 Network to ISDN data transfer 

• The data received in a LAN-ISDN channel, whose status bit is not set, are 

transmitted back in the ring. The received data are not transmitted in the 

corresponding ISDN channel. 

• If a status bit is set and this is not the first cycle in which this bit is found 

set, the received data, from the corresponding LAN-ISDN channel, are trans­

mitted through the corresponding ISDN channel, and the received data are 

not inserted back in the ring. If no data are received, fill characters will be 

transmitted through the corresponding ISDN channel. 

• If a status bit is set and this is the first cycle in which the bit is found set, the 

data received in the corresponding LAN-ISDN channel will be considered as 

a part of the token channel and will be transmitted back in the ring without 

any further action. 
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3.3.2.2 ISDN to network data transfer 

• If data are received in an ISDN channel and the status bit of the corresponding 

LAN-ISDN channel is set in the current cycle and this is not the first cycle in 

which the status bit is found set, the interface first waits for the beginning of 

the corresponding LAN-ISDN channel and then transmits the received data 

in the LAN-ISDN channel. 

• If data are received in an ISDN channel and the corresponding status bit is 

free, the received data are simply discarded.^® 

• If no data are received for a LAN-ISDN channel whose status bit is set, the 

fill characters are transmitted in that channel. 

3.3.2.3 D channel interface The LAN-ISDN D channel is permanently 

connected to the ISDN D channel and vice versa. The data received in the LAN-

ISDN D channel are transmitted through the ISDN D channel and is also echoed 

back without any alteration. If no data are received—from the network or from 

the ISDN—the fill characters are transmitted towards the opposite side. The LAN-

ISDN D channel is always monitored by all the stations all the time and only used 

for signalling and control information transfer. 

^®In normal operation, this situation cannot occur. Because, a remote station 
must establish a connection, reserve free B channel and only then start transmission. 
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.3.3 Token channel interface 

The data received in the token channel are simply transmitted back, without 

any alteration, in the ring. 
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4 SPECIFICATIONS 

The key aspects of the proposed MACS are specified in Functional Specification 

Description Language (SDL). A brief overview of the specifications is presented in 

this chapter following an introduction to SDL. 

4.1 SDL 

SDL is defined by the CCITT in the CCITT recommendations Z.lOO to Z104 [5], 

[6]. The language has single semantic-model based two different syntaxes: SDL/PR 

and SDL/GR. SDL extends the Finite State Machine (FSM) by introducing two 

auxiliary operations: decision and task. Both, decision and task, reduce the number 

of explicit states required to represent a protocol. 

In SDL/PR, a system is represented by program-like statements. Whereas in 

SDL/GR, a system is specified by a set of rules and standardized graphical symbols 

(described below). The SDL/GR is selected to specify the MACS for two reasons: 

First, it is more readable than SDL/PR and can be understood without knowing 

all the pros and cons of the language. Second, it is possible to translate SDL/GR 

into SDL/PR, whereas the converse is not true. 
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4.1.1 SDL constructs 

In this section, some important SDL constructs required to specify a system 

are discussed. The graphical symbols for some of these constructs are shown in 

Figure 4.1. 

4.1.1.1 System A system is a concrete entity separated from its environ­

ments by a system boundary and contains a set of blocks communicating through 

interconnecting channels and processes. 

4.1.1.2 Channel A channel is a unidirectional transparent route for the 

signals. 

4.1.1.3 Blocks A block is an object of manageable size in which one or 

more processes can be interpreted. 

4.1.1.4 Signal A signal is a flow of data conveying information between 

processes and represented either by output or by input symbols. 

4.1.1.5 Process A process is a communicating FSM which defines the dy­

namic behavior of the system and possesses four predefined variables of process 

identifier type SELF, PARENT, OFFSPRING, and SENDER. 

4.1.1.6 Procedure A procedure is a way of giving name to an assembly of 

items. It permits the structuring of the process graph, maintains the compactness 

of the specifications, and allows assembly of the items for repeated use. 
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4.1.1.7 State A state is a representation of the logical situation of a process 

in which no action is performed other than monitoring the input queue. 

4.1.1.8 Task A task is a representation of a set of actions not having a 

direct effect outside the process. 

Other than these constructs, SDL specifies symbols, for developing a process 

graph, such as: 

• decision: indicates the sequencing of the process upon storage modification. 

• save: indicates that an arriving signal will be saved. 

• con: indicates the interconnection of the process graph. 

• call: indicates the calling of a procedure. 

• return: indicates the termination of a procedure. 

• input: indicates the input signal the process might be waiting for.^ 

• output; indicates the output signals sent by the process—subject to the se­

quencing of the process.^ 

^Two input signals are shown in Figure 4.1. In the specifications, these signals 
are used to categorize the senders of the signals. 

^Two output signals are shown in Figure 4.1. In the specifications, these signals 
are used to categorize, if possible, recipients of the signals. 
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Figure 4.1: SDL Constructs 
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4.2 Overview of the Specifications 

The system is decomposed into two blocks: a station block and an interface 

block. A station block specifies the behavior of a LAN station, and an interface 

block specifies the behavior of the ISDN/LAN interface. 

4.2.1 Station Block 

As shown in Figure 4.2, the station block possesses 14 processes. Five of these, 

RINFMNG,C.STS.MNG,TRINF.MNG,TKNMNG, and a user-defined 

process specify management and interface activities of a LAN station. RCV and TR, 

as their names imply, specify receive transmit functions of the network, respectively, 

and they also act as an interface between the network and the other processes. RCV 

also detects the flags, such as: SD and ED. RCV.MNTR monitors the data received 

from RCV and informs LLC -INT F .RCV that a data packet is received form the 

physical  layer  and also conveys the control  and signall ing information to C-A.C 

process, which is responsible for regulating the access to the ISDN channels by using 

information received from RCV.MNTR and C.STS.MNG. Packets received from 

other s tat ions are transferred to LLC layer through RINF.MNG. 

The token channel can be implemented with PKT.TR,TKN_CNT, 

LLC-I NT F.RCV, and LLCJNTF.TR. PKTJTR manages the transfer of the 

PDU received from the uppper layer to MPXR, subject to the permission of 

TKN.MNG, which monitors the information received form TKNjCNT and de­

cides to transfer or delay the token. 

MPXR is the heart of the transmission control of the network. It receives data 
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from PKTJTR, USER-DEFINED, C-A.C, and RCV and synchronizes all the 

transmission activities. The specifications of the key, station block processes are 

given in APPENDIX. 

4.2.2 ISDN/LAN interface specifications 

The ISDN/LAN interface is specified with the help of five processes. Three of 

which LAN .RCV .M, LAN-RCV and LAN.TR are synonyms of RCV .MNTR, 

RCV, and TR respectively. 

The ISDN.RC is responsible for detecting flags and then transmitting the 

received signals to TR through I.N.TR. The ISDN.TR inspects the flags and 

then transmits the previously received signals from N JJTR, into the ISDN. If the 

required signals are not received within the prespecified duration, ISDN .TR will 

transmit fill characters into the ISDN.^ The specifications of the key ISDN/LAN 

interface processes are given in the APPENDIX. 

4.3 Complexity Analysis 

Though a broadly acceptable meter to compare the complexity of widely vary­

ing protocols is yet to be discovered, number of states and I/O signals are generally 

used to quantify the complexity of the protocols. Table 4.1 lists the number of 

signals and states of the key, interface processes. 

®The format of the fill characters is not discussed here. 



www.manaraa.com

39 

HHJSMJR(I_J,1,X) 

ISDN TR IND 

X 
N.l.TR 

X 

• 

1 N TR 
k ' ' J HPX DAT(X) 

ISCH. r«_TR_DAT( I_l , I ,X) 
y s. •V 

1SDN_TR ICDfl.RC 
x > / 
I ISDN_TR_DAT(X) fISDM.RCV_DAT(X) 

RCV DAT(X) 

ISDII.CHM.STRKIJ) 

TR_DAT_IND 

LAN RCV H 

LAIl.TR 

RCV_CIK ^ 

RCV_DAT(X), 

LAM RCV 

TiiH_DAT(X) NH OAT(X) t 

Figure 4.3; Process Interaction Diagram of ISDN/LAN Interface 



www.manaraa.com

40 

Table 4.1: Complexity of Interface 

Process States 1 Input Output 

Interface 6 7 2 
ISO Transport 8 11 8 

Process States Input Output 

N J S R  3 3 1 
U f S R  3 4 1 
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5 SIMULATION AND ANALYTICAL MODELING 

Simulation models were developed, in SLAM [33], for analyzing the following 

aspects of the proposed MACS: 

• The behavior of the D channel under varying, control messages traffic. 

• The token channel behavior under varying, data traffic. 

• The impact of the TTRT on the token channel performance. 

In the following sections we will look into the details of these models and the 

performance of the network under different loading conditions. 

5.1 Network Parameters 

5.1.1 LAN Characteristics 

• Bit rate: 20 Mbps 

• Stations: 100 

• Inter-station gap: 10 meters (constant) 

• Cycle insertion rate: 8KHz 

• Topology: Ring 
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5.1.2 ISDN interface 

Primary interface with 1 D and 23 B channels. 

5.2 D Channel Model 

A simulation model was developed to analyze the behavior of the D channel 

for: 

• Transferring short control messages. 

• Establishing and de-establishing a circuit switched call. 

5.2.1 Control message transfer model 

The D channel is modeled as a cyclic server which can remove and then transfer 

one byte of information, in every cycle, until the queue under service is exhausted. 

The operation of the D channel is depicted in Figure 5.1. 

5.2.1.1 Traffic characteristics 

• The arrival process is Poisson. 

• The number of bytes in a message are geometrically distributed.^ 

• Data traffic on every station is identical and independent from the rest of the 

stations. 

^This will not restrict our analysis for continuous message length. 
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station N 
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Figure 5.1: D channel as a Cyclic Server (non-prioritized case) 

5.2.1.2 Analytical model The notations described in this section will be 

used throughout this chapter to represent different parameters of the mathematical 

models. 

W = Waiting time of a packet 

= Variance of propagation delay 

r = Expected propagation delay 

N = Number of stations 

A = Number of packets arriving in one cycle time 

b = Expected number of bytes in a packet 

= Second moment of number of bytes in a packet 

6^ = Variance of number of bytes in a packet 

-y2 = Variance of number of packets arriving in one cycle time 
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(j2 = Variance of number of bytes arriving in one cycle time 

fi = Expected number of bytes arriving in one cycle time^ 

R = Rotation time^ 

For symmetrical stations the expected rotation time is given by Takagi [40], 

= (5.1) 

The variance of the rotation time is computed as: 

N (T^rN^ 

The waiting time for a packet for the exhaustive discrete (G/G/1): (FCFS/oo/oo) 

queuing system: 

and the expected queue length in terms of number of bytes is given as: 

Since we are primarily interested in the mean queue length of the packets, the 

expected queue length of the packets {Lp)is computed by exploiting the indepen­

dence between the number of packets arriving in a cycle time and the number of 

bytes in a packet: for such cases the expected queue length is computed as, 

E[h] + 26(1 

^If the number of packets arriving in a cycle time and the number of bytes in a 
f r a m e  a r e  i n d e p e n d e n t  t h e n  n  =  b X .  

®The rotation time is defined as the interval between two consecutive events in 
which the D channel is observed free by a station. 
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5.2.1.3 Simulation model 

5.2.1.3.1 Modeling difficulties Since the number of stations to be 

modeled are 100 and bit rate is 20Mbps, the number of events to be simulated is 

exceptionally large.'^ A few optimizing techniques were used to reduce the number 

of events to be simulated. 

The cycle was not simulated on all stations. A station who is currently holding 

the D channel will stop the scheduling of the cycle arrival on all other stations and 

will compute the time it takes to transfer the packet which is: 

PKTT = * CYCTIM 

PKTr = Packet transfer time 

PKTs = Packet size 

SLSIZ = Slot size (D channel capacity) 

CYCTIM = Cycle time 

The cycle will be inserted after PKTr seconds. 

It was also observed that under low intensity traffic the simulation model exe­

cution time is large.^ 

This counter intuitive behavior of the D channel simulation model® is explained 

''For example, to simulate one hour control message traffic, 28.8 million cycle ar­
rival events are required to be simulated. It was observed on AT&T 3B15 computer 
that the simulation time for such traffic is more than 2000 CPU minutes. 

®For example, the model was executed to simulate 60 minutes data traffic of 30 
calls/hour. It took more than 5000 CPU minutes on AT&T 3B15 computer and 
could not simulate even 30 minutes traffic. The process was finally killed. 

®Since under low intensity traffic the number of events to be scheduled are re­
duced, the simulation model execution time is expected to be reduced. 
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as: the low intensity traffic implies that a frame, with no D channel data will 

circulate in the ring and will simulate, after a station to station propagation delay,^ 

a frame arrival event on every station and will fill the event calendar with a large 

number of cycle arrival events. However, under high intensity data traffic, the 

chances of a station having a packet to transfer and stopping the scheduling of the 

cycle arrival—using the previously stated optimizing technique—on other stations 

are relatively more. Thus, the net simulation model execution time, under high 

intensity data traffic, will reduce. 

To get rid of this problem, the model was modified for low intensity data traf­

fic. Under low intensity data traffic, a station monitors the queues of the stations, 

and if they are all empty, the cycle is stopped. Otherwise, the cycle is continued. 

When a call is generated and the cycle is stopped, the following algorithm is used 

to compute the position of the frame in the ring: 

TimDiff = CurTim — StopTim] 

while (TimDiff > 0) do 

{ 

TimDiff = TimDiff -  PRPDLY-, 

Posit = {Posit%NSTN) + 1; 

If (Posit == 1 ) 

TimDiff — TimDiff — FramTim] } 

In the above algorithm, the Posit indicates the station that stopped the cycle last 

^The master station will follow a slightly different rule. 
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time. NSTN indicates the number of the stations—100 in our case. FramTim is 

the transmission time of the frame, and PRPDLY indicates the propagation delay-

between two consecutive stations. StopTim and Cur Tim represent the the time at 

which the cycle was stopped and the current simulation time, respectively. The 

cycle arrival event will be scheduled after the ABS(TimDifF) time at the station 

indicated by the Posit. 

5.2.1.4 Results The relation between normalized load and normalized, 

expected, waiting time (NE[W]) is shown in Figure 5.2 , where 

NonnaUze Load = eWnii capacity 

and 

NE\W\ = delay+service time 
I J service time 

The simulation as well as the analytical model results indicate that: 

• The queue length and also the maximum buffer occupancy is not proportion­

ally reduced as the packet arrival rate is reduced and the size of the packet is 

proportionally increased.® 

• The packet size has no statistically significant impact on the waiting time.^ 

®The reason of this counter intuitive results can be explained with the help of 
the equation 5.5. when the packet size increases the second moment of the packet 
size—a random variable—also proportionally increases and offsets the reduction in 
the queue length—caused by the lower arrival rate of the packets. 

®This statement is not valid for all cases. 
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Since the channel is used for realtime data traffic, the peak queuing times^®, under 

different loading conditions, are computed for the packets of 50 and 100 bytes 

lengths (shown in Figure 5.5). The expected queue length and the required buffer 

capacity, under varying loading conditions, are shown in Figure 5.3 and figure 5.4, 

respectively. 

5.2.2 Call establishment and de-establishment 

A prioritized multi-qiieue simulation model of the D channel—depicted in Fig­

ure 5.6— is developed to monitor the channel performance for call establishment 

and de-establishment procedure—shown in Figure 5.7 [7]. 

5.2.2.1 Call control messages The D channel is assumed to support the 

messages shown in Table 5.1. But in our case only a small subset of the call control 

messages is required to be simulated.^ ̂  Further, to reduce the tariff charged by the 

carriers the following priority order is proposed. 

1. DIS: a disconnect message from the calling party 

2. RL: a release complete message from the calling party 

g 3. SETUP: a connection set up message from the calling party 

4. ALRT: an alert message from the called party 

^"The queuing time is equal to the waiting time minus the service time. 
^^The reduction in number of the control messages is a direct consequence of the 

simplifying assumptions—will be discussed shortly. 
^^The control messages are listed in descending priority order. 
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Figure 5.6: D Channel as a Cyclic Server (prioritized case) 

5. RLACK: a release message from the called party 

6. CONACK: a connect message from the called party 

5.2.2.2 Control messages transfer rate According to a study con­

ducted by the Bellcore [17], the number of calls originating from a premise is as 

follows: 

• For residence, 3.9 calls per hour. 

• For business, 10.6 calls per hour. 

• For high usages,27.2 calls per hour. 

We will analyze the D channel behavior for varying call originating rate. 

"An example of high usage is a PBX. 
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5.2.2.3 Control messages lengths The control messages lengths are 

specified by the CCITT in its recommendations 1.451 [7]. But these lengths do not 

include the overhead introduced by LAPD. To compute the pragmatic lengths of 

the control messages, shown in the Table 5.1, we assume the following: 

1. The bit stuffing will increase the control message length by 3% [17]. 

2. For control message field, the modulo 8 transmission mode is supported. 

3. Only 128 addresses, for TEs, are supported. 

4. The setup message will not carry user information. 

5.2.2.4 Assumptions Since the call establishment and de-establishment 

procedure is complex, only the simulation model of the procedure is developed with 

the following assumptions: 

1. The D channel is used only for signalling and control information transfer. 

2. Only unacknowledge frame transfer mode of LAPD is allowed. 

3. The call-traffic is symmetric. 

4. All calls, originated and received, are accepted. 

5. The calls are terminated by the calling party, not by the called party. 

^'*The number of calls originated and received at a station for a given period is 
same. 
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Table 5.1: Circuit Mode Connection Messages 

Control Messages 1 Length (bytes) 
Call Establishment Messages 
ALERT 22 
CALL PROCeeding 12 
CONNect 32 
CONNect AC Knowledge 12 
SETUP 56 
SETUP ACKnon'ledge 21 
Call Information Phase Messages 
RESume 12 
RESUME ACKnowledge 6 
RESUME REJcct 6 
SUSPend 6 i 
SUSPend ACKnowledge 6 
SUSPend REJect 9 
USER INFOrmation 10 
Call Dis-establishment Messages 
DETach 15 
DETach ACKnowledge 12 
Disconnect 15 
RELease 15 
RELeasc COMplete 15 
Miscellaneous Messages 
CANCel 12 
CANCel ACKnowledge 3 
CANCel REJect 6 
congestion CONtrol 10 1 
FACility 16 
FACility ACKnowledge 6 1 
FACility REJect 9 
INFOrmation 31 
REGister 9 
REGister ACKnowledge 6 
REGister REJect 9 
STATUS 10 
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6. The channel identification field is set in the SETUP message and is not mod­

ified either by the calling party or by the called party. 

7. The Overlap information mode is not allowed. 

8. The connections are not modified during the call^^. 

9. The SETUP and RLACK message arrivals are independent and Poisson dis­

tributed. 

10. The delay between DIS and RL control messages is zero. Similarly, the delay 

between ALRT and CONACK control messages is zero. 

11. The service discipline of the queuing model is non-preemptive, exhaustive, 

and first come first serve. 

12. A high priority queue in a station is served before a low priority queue service 

is initiated. 

5.2.2.5 Message traffic 

• The call arrival process is Poisson with an upper mean limit of 45 calls per 

hour. 

• Calls last for an average duration of 60 seconds. 

^®An example of connection modification is an addition of a third party after 
establishing a connection. 
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Figure 5.8: Expected Waiting Times of SETUP, RL, DIS, and ALRT Messages as 
a Function of Call Inter-arrival Time 
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5.2.2.6 Results The simulation model results are shown in Figures 5.8 and 

5.9. Since some of these parameters have practical significance, the waiting time of 

messages is computed in realtime units. The graphs indicate that at a call arrival 

rate of 45 calls per hour per station a call can be disconnected in about 3.450 msec, 

and the average wait time for a control message is about 3.50 msec. 

5.3 Token Channel 

5.3.1 Traffic categories 

The token channel behavior is analyzed for the following categories of data 

traffic: 

• Homogenized data traffic^^ without any TTRT. 

• Homogenized data traffic with the static TTRT. 

• Non-homogenized data traffic^'^ with the static TTRT. 

• Non-homogenized data traffic with the dynamic TTRT. 

5.3.2 Traffic characteristics 

• The arrival process is Poisson. 

• All stations are symmetrical. 

^®The term homogenized data traffic is used to represent a data traffic with no 
timing or priority restrictions. 

^^The term non-homogenized data traffic is used to represent a data traffic with 
timing restriction. 
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• Arrival of a packet and the size of the packet are mutually independent. 

• The length of the packet is exponentially distributed. 

5.3.3 Token channel performance without the TTRT: homogenized traf­

fic case 

In this case, the token channel operation is similar to the non-prioritized, D 

channel operation.^® Thus, the analytical model of the D channel is used to compute 

the expected waiting time and the expected queue length of the token channel. 

5.3.3.1 Analytical and simulation model The expected waiting time 

and the expected queue length for this case can be represented with equations 5.3 

and 5.5, respectively. But to compute the numerical values of the expected waiting 

time and the expected queue length the packet size must be converted into a discrete 

random variable. Since the packet length is exponentially distributed, we expect 

that most of the traffic generated by the stations will not lie on the token channel 

boundary. Thereby, the number of token channels required to transmit a packet 

may not be geometrically distributed, particularly when packet size is not very 

large as compared to the size of the token channel. Therefore, the simulation model 

was modified to compute the mean and variance of the number of token channels in 

a packet. These values are then used for computing the performance of the token 

channel under different loading conditions. For all other aspects, the simulation 

model of the token channel is similar to the D channel simulation model. 

^®The service discipline is non-preemptive, exhaustive, and FCFS. 
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5.3.3.2 Results The performance characteristics of the token channel for 

the packets of 1 Kbytes size are shown in Figure 5.10, Figure 5.11, Figure 5.12, and 

Figure 5.13. The simulation and analytical results indicate that, compare to the 

D channel, the expected waiting time and the expected queue length increase at 

a much higher rate at higher values of the normalized load. The prime reason of 

this poor performance of token channel is large number of fill characters which are 

transmitted to convert the packet size into an integral number of token channels. 

5.3.4 Token channel performance with the static TTRT: homogenized 

traffic case 

Since the state space of the analytical model of the token channel with the 

TTRT is very large, the analytical model is hard to develop. Consequently, only 

the simulation model was developed to analyze the behavior of the token channel. 

5.3.4.1 Results The simulation model results indicate that: 

• A large value, such as 100 * E[PkSz]^^, of the TTRT will yield almost the 

same performance as of the token channel without any TTRT restriction. 

• For high intensity data traffic, such as more than 50% of the token channel 

capacity, a low value of the TTRT, such as 3 * EfPkSz], will increase the 

variance and the expected value of waiting time. 

• For low intensity data traffic, even a low value of the TTRT has no statistically 

significant effect on the token channel performance. 

^®E[PkSz] represents the expected value of the packet size. 
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Figure 5.10: Expected Normalized Waiting Time of Homogenized Data Packets 
a Function of Normalized Load 
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Figure 5.11: Expected Queue Length of Homogenized Data Packets as a Function 
of Normalized Load 
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Figure 5.12: Maximum Waiting Time of Homogenized Data Packets as a Function 
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5.3.5 Token channel performance with the static TTRT: non-homogenized 

traffic case 

For performance comparison, we divide the data traffic into two broad cate­

gories: synchronous and asynchronous. A synchronous data packet can be trans­

mitted if the token is received within the TTRT and constitutes 10%^® of the total 

traffic generated by the stations. An asynchronous data packet can only be trans­

mitted if the token is received within the TTRT and the transmission of the pending 

asynchronous data packet will not exceed the bound set by the TTRT. Asynchronous 

data traffic constitutes 90% of total data traffic generated by the stations. Both, 

synchronous and asynchronous data traffic, have the same characteristics as stated 

in section 5.3.1. 

5.3.5.1 Results The simulation model results indicate that: 

• A lower value of the TTRT reduces the expected waiting time of the syn­

chronous, data traffic but increases the expected waiting time of the asyn­

chronous data traffic. 

• The overall expected waiting time, variance, and number of buffers required 

for waiting PDUs are drastically increased for lower values of the TTRT. 

• A higher value of the TTRT will reduce the expected waiting time of asyn­

chronous data traffic but will increase the expected waiting time of syn­

chronous data traffic. 

^"This value is selected for comparison purpose only, and it has no other 
significance. 
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5.3.6 Token channel performance with the dynamic TTRT: non-homogenized 

traffic case 

In this case, the TTRT is dynamically changed. If a station has a pending 

synchronous data packet, it will request to reduce the TTRT. The station which 

is holding the token will do so when it will transmit the token into the ring. The 

previous value of the TTRT is restored when no station has a pending synchronous 

data packet. 

5.3.6.1 Results The simulation model results indicate that: 

• For synchronous data traffic, compare to the static TTRT approach, the dy­

namic TTRT approach yields lower expected waiting time, lower expected 

variance of waiting time. 

• For asynchronous data traffic the dynamic TTRT approach is comparable to 

the static TTRT approach. 

• In cases where synchronous traffic is required to be transmitted at lower val­

ues of the expected waiting time, the overall performance of the dynamic 

TTRT approach is better than the static TTRT approach in terms of ex­

pected waiting time, variance of expected waiting time, required buffers for 

pending PDUs, and peak waiting time. 
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Figure 5.14 (continued) 
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Figure 5.15 (continued) 
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Figure 5.16: Maximum Waiting Time of Non-homogenized Data Packets as a 
Function of Normalized Load 
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Figure 5.16 (continued) 
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Figure 5.17; Maximum Buffer Occupancy of Non-homogenized Data Packets as a 
Function of Normalized Load 
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Figure 5.17 (continued) 
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6 CONCLUSION 

The proposed MACS provides a dynamically controlled, circuit switched 

bandwidth—up to 1.544 Mbps—to the LAN users. The uSers data are transparently 

transmitted across the ISDN and incoming data is transparently shipped to the users 

by exploiting the ring topology and using a distributed access control technique. 

The semantic gap between the ISDN and the proposed MACS is very nominal. 

Consequently, the ISDN/LAN interface does not require an extensive buffering or 

mapping. It eliminates queuing and processing delays—generally, encountered in 

gateways and bridges. 

The proposed strategy allows rapid connection and disconnection of circuit 

switched calls a to a user and the expected delay of signalling information is nominal. 

A contribution of this research effort is a comprehensive analysis of the TTRT 

and its extension to improve the LAN performance. It is concluded that a static 

TTRT, in general, reduces the throughput of the network, and increases the network-

access-delay. The proposed strategy solves these problems by dynamically adjusting 

the TTRT. 
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6.1 Future Work 

Several comparative studies are required to understand the full potential of the 

proposed MACS. Particularly, the following aspects of the proposed strategy need 

to be further investigated: 

• Development of an analytical model of the token channel under TTRT restric­

tions. 

• Comparison of the TTRT and the priority, 

• Extension of the status channel to utilize the ISDN channels of the LAN for 

supporting a circuit switch facility on the token channel. 
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